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Quasiprobability distributions

3.1 Wigner representation

In classical optics the state of an electromagnetic oscillator is perfectly described

by the statistics of the classical amplitude at. The amplitude may be completely
fixed (then the field is coherent), or a may fluctuate (then the field is partially
coherent or incoherent). In classical optics as well as in classical mechanics,
We can Characterize the statistics of the complex amplitude at or, equivalently,
the statistics of the components position 4 and momentum p introducing a

phase-space distribution W(q, [1). (As explained in Section 2.1, the real and

the imaginary part of the complex amplitude at can be regarded as the position
and the momentum of the electromagnetic oscillator.) The distribution W(q, p)
quantifies the probability of finding a particular pair of q and p values in their

simultaneous measurement. Knowing the phase—spaceprobability distribution,
all statistical quantities of the electromagnetic oscillator can be predicted by
calculation. ln this sense the phase—spacedistribution describes the state in

élassical physics. All this is much more subtle in quantum mechanics. First

of all, Heisenberg’s uncertainty principle prevents us from observing position
and momentum simultaneously and precisely. So it seems there is no point
in thinking about quantum phase space. But Wait! In quantum mechanics we

cannot directly observe quantum states either. Nevertheless, we are legitimately
entitled to use the concept of states as if they were existing entities (whatever
they are). We use their properties to predict the statistics of observations.

Why not use a quantum phase—spacedistribution W(q, p) solely to calculate

observable quantities in a classicallike fashion? Clearly, the concept of quantum
phase space must contain a certain flaw. The probability distribution W(q. p)
could become negative, for instance, or ill—behaved. Also, the classicallike the
fashion of making statistical predictions may seem to be classicallike at the first

glance but not at the second. For these very reasons we should call W(q. p) a

quasiprobability distribution. Furthermore, there are certainly infinitely many
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ways of making up quasiprobability distributions (simply because there is no

way of defining them properly). Which one shall we choose? Is there a royal
road to quantum phase space?

3.1.1 Wigner’sformuh
Bertrand and Bertrand [29 [had the brilliant idea of defining the quasi probability
distribution W(q, p) by postulating its properties. Just one postulate turns out

to be sufficient. Let us assume that the distribution W(q, p) behaves like a joint
probability distribution for q and p without ever mentioning any simultaneous

observation of position and momentum. What can we say about classical prob—
ability distributions? The marginal distributions or. in other words. the reduced

distributions ff: W(q, p) dp or 1:3:W(q, p) dq must yield the position or

the momentum distribution, respectively. Additionally, if we perform a phase
shift 6 all complex amplitudes are shifted in phase. meaning that the compo—
nents q and p rotate in the two—dimensional phase space (q, p). A classical

probability distribution for position and momentum values wouldrotate accord-

ingly. in view of this fact we postulate that the position probability distribution

pr(q. 6) after an arbitrary phase shift 6 should equal

PWLO) E (qlflwmffltenq)
+06

= W(qcos6—psin6.qsin6+pcos6)dp. (3.1)
700

This single formula marries the quasiprobability distribution W(q, p) with

quantum mechanics. The same formula ties W(q, p) to observable quantities.
And, even more remarkably, the formula links quantum states to observations.

Considering special cases of formula (3.1) we see that the marginal distribu—

tions of W(q, p) produce the correct position and momentum probabilities,
respectively. For 6 = 0 we obtain

-+oo

W01, p) dp : (qlfilq) (3.2)

and for 6 : 71/2
400 +oc

(plfilp) : W(—q, p) dq = W01, [WM (3.3)

[Tojustify Eq. (3.3) we note that Ul(71/2)|q) is a momentum eigenstate [p =

q) with eigenvalue 4 according to Eq. (2.15).] integrals such as (3.1) are

called Radon tramfrmnations [226], and they are thoroughly studied in the

mathematical theory of tomographic imaging [113], [194]. The inversion of

the Radon transformation [226] plays a distinguished role in tomography. in
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quantum—statetomography the inverse Radon transformation turns out to be

the mathematical key for quantum—state reconstruction. See Section 5.1.1.

Why is postulate (3.1) sufficient? To understand the reason we introduce the

Fourier—transformeddistribution Wm, 12)called the characteristic function
so +00

V'V(u.,v) 2/ W01, p) CXPHuq eivpfllq dp (3.4)
:x: —00

and the Fourier—transformed position probability distribution Eds, 6)
+00

WE, 6) 5/ pr(q, 6) exm—i‘éq) dq- (3.5)
’0‘}

On the other hand, the basic postulate (3.1) for W(q. p) requires that

+00 +oc

13705.6): / Wm: p’)exp<—iaq)dqdp, (3.6)
~ —00 —OC

with the abbreviations

q'=qcos6—psin6 and p’=qsin6+pcos€. (3.7)

Consequently, q is given by

q = q’cos6 + p'sin6. (3.8)

We change the integration variables from (L1’. p’) to (q, p) and obtain, according
to the very definition of the characteristic function (3.4),

p~r(§,6) = We: cos 6, g sin6). (3.9)

The Fourier-transformed position probability distribution is the characteris—

tic function in polar coordinates. In this way the two functions are intimately
related. So far we have used only the second line of the fundamental postu—
late (3.1) or, so to say, the classical nature of the quasiprobability distribution

W(q, p). The quantum features come into play when we substitute the first

line, that is. the definition of pr(q, 6) in the Fourier transformation (3.5). We

obtain explicitly
+00

imam: / (qlmemfilwmepoéqu
00

+00

=/ (4|0(9)fi0?(9)6XP(-iEt})lq) d1]
00

= tr{0<6)/301<0)expeism}
= tr{,3ffl(0)“Masai/(6)}. (3.10)

We use the rotation formula (2.15) for the quadrature operators to get

01(9) exp(—i§é)f](6)= CXp(—ié§ cos0 7 if); sin0). (3111)
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This is the Weyl operator [289] exp(\iur} —— iv [3) in polar coordinates. The

Fourier transform [T115. 6) gives the characteristic function in polar coordinates,
as we have learned from Eq. (3.9). Consequently,

W(u,v):1r{/3exp(—im}—1v[;)]. (3.12)

The characteristic function is the “quantum Fourier transform" of the density
operator. Because the characteristic function Wm, v) is the Fourier transform

of W(q. p) by definition, the quasiprobability distribution W(q, p) should be

very closely related to the density operator. lndeed, both are one—to—one repre—
sentations of the quantum state, as we will show in the next subsection. 3.1.2.

Let us calculate the trace in Eq. (3.12) in the position representation. We use

the Bakeerausdorff fomiula (2.55) to reexpress the Weyl operator

exp(—iuq — ivp) — exp<iuzu)exp(— iuq) exp(— ivp). (3.13)

The operator exp(—ivp) shifts the position eigenstates |q) by v to produce
lq + v) because of the relation (2.21) between the position and momentum

eigenstates. Consequently,
+30

W(u,v):/(qlfiCXN-iuti-ivfiflqu0c

,uv
W“

A .=6XP<-17)/(quCXP(—1uq)lq+v)dq- (3-14)
00

We replace 4 by x — 11/2 and obtain the compact formula

_

+0C
U U

W(u, v) =/ exp(—iux)<x7 w ,6 x + ~>dx. (3.15)
-00 2 2

To derive an explicit expression for the quasiprobability distribution W(q, p),
we simply invert the Fourier transformation in definition (3.4) and get by virtue
of formula (3.15) for the characteristic function

+00 +oc

W(q.p)—
(27f)Z/W Wm v)exp(iuq+ivp)dudv

+00 +00 +301,

=<27r)2//:/_<"_5pq+2>
x

1exp(—iuq+1th + ivp) dq du dv

+00 +00”

2M1 <q_:
x8(q —q)dvdq. (3.16)

I
I)

-

pq + 2 6Xp(lvp)
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setting x = v we obtain, finally,

fiq+§>dr(3.17)
1 +00

.
x

Wm, p) = 3/ CXP(IPX)<q,

5
This is Wigner’s legendary formula [290] for a classicallike phase—spacedis—
u-ibution in quantum mechanics called the Wigner function. It appeared for the

first time in his 1932 paper [290] “On the Quantum Correction for Thermody-
namiC Equilibrium.” It was “chosen from all possible expressions, because it

w»:

seems to be the simplest.

3.1.2 Basic properties

Wigner’s representation of quantum mechanics has found many applications
in broad areas of quantum physics. It was used whenever quantum corrections

to classical laws were of interest, as in Wigner’s 1932 paper [290]. Countless

articles have been written on the Wigner function itself. Because there is room

neither for mentioning all of them here nor for deriving all known properties
of the Wigner function, the reader is referred to Moyal’s early yet excellent

text [19] ] and to the more recent review articles by Tatarskii [263]; Balazs and

Jennings [10]; Hillery, O’Connell, Scully, and Wigner [116]; and Lee [149]
and to the book [135] by Kim and Noz. Here we will focus on only the basic

properties of the Wigner function. First, we note that the Wigner function is real

W*(q,p) : W(q,p) (3.18)

for Hermitian operators ,6. This property is verified by considering the com—

plex conjugate of Wigner’s formula (3.17) and replacing x by 7x. The Wigner
function is normalized

+00 +oc

/ W(q,p)dqdp =1, (3.19)
00 —00

as is easily seen from Wigner’s formula (3.17), because the density operator )6
is normalized so that tr{fi} = 1. So far the Wigner function shows features of
a proper probability distribution.
A remarkable property of the Wigner representation is the overlap formula

+30 +00

trtfitfizi = 2n / W1<q,p)w2<q,p)dqdp (3.20)
730 —00

for the Wigner functions W1 and W2 of two arbitrary operators F1 and F2. Both
operators are not even required to be Hermitian, and we have used Wigner‘s

*A footnote. however, says that "this expression was found by L. Szilard and [ER Wigner] some

years ago for another purpose. . .
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formula (3.17) with Fk instead of ,6 to define a Wigner function for the FA.op—
erators. The proof of the overlap formula (3.20) is a straightforward calculation

using Wigner’s expression (3.17) for the right—handside
-+:>o +00 +00 +00

. X] A x,M/ /x /cmexp[1p(x1+x2)]<q—§F1q+3>
x<q——F2q+—

2X2>dx1dxqudp
=/+m

W
X

F +x 16
x

d d/OC[1—5 111+2 q 5 24—; 4x

+00 +30
A A

=/ / (q’IFilq")(q"|leq')dq'dq"
+00 +00

+oc
A A

= / (q'lFinlq’Mq’
foo

=ir{fi,fiz}_ (3.21)

Why is the overlap formula remarkable? We can use it for calculating expec—
tation values

+oc +00

trust} = 2n / W(q. p)WF<q. p) dq dp. (3.22)
—0C —30

(We have simply replaced F1 by ,6 and F2 by F.) This equation would be the

rule for predicting expectations in classical statistical physics, too. The Wigner
function W(q, p) plays the role of a classical phase—spacedensity, whereas

WF(q, p) appears as the physical quantity that is averaged with respect to

W(q. p). This is exactly the classicallike fashion of calculating quantum-
mechanical expectation values we were seeking. We can understand formula

(3.22) another way by seeing WF(C], p) as a filter function. Consequently, all

that quantum mechanics allows us to predict are filtered projections of the

Wigner function. All that we can see are shadows of the states, very much in

the sense of Plato’s famous parable [219] mentioned in the introduction, yet
formulated more precisely, that is, more quantitatively.
Another simple consequence of the overlap formula (3.20) is the expression

+30+00

mp1 MM = 2n/ wltq, mwth. mm 623)
DC

for the transition probability between the pure states Wu) and lt/zg). However,
this quantity vanishes if the states Wu) and lt/Ig) are orthogonal

(1/11I 111;)= 0. (3.24)
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The overlap (3.23) of two positive functions W1 and W2 cannot be zero. Conse

quently’Wigner functions cannot be positive in general. (In fact, states having
Gaussian wave functions are the only pure states with nonnegative Wigner
functions. See [1 19], [185]. and [263].) In this way the overlap formula (3.20)
reveals strikingly both the similarities and the differences between a classical

probabilitydistribution and the Wigner function. Quantum interference im-

pliesthat the classicallike Wigner function cannot be regarded as a probability
distribution but as a quasiprobability distribution only. This property is one

way in which the unavoidable flaw in the concept of quantum phase space may

appear. Negative regions in the Wigner function of a given state can be seen as

signatures of nonclassical behavior [185].

Using the overlap formula (3.20) we are also able to quantify the purity of a

quantum state. In fact, identifying both F1 and F2 with )6 we obtain

+00 +zxz

nmfl}=2n / W<q.p)2dqdp. (3.25)
00—30

The purity tr{fi2}ranges between zero and unity and equals exactly unity if

and only if the state is pure ()6 : |i//)(i//|). According to relation (1.21) the

von-Neumann entropy S is bounded by
+00 +30

5 E itrm 1n ,6} 2 1 — 2n/ W(q, p)2dq dp. (3.26)
*0C 730

We see that the overlap of the Wigner function with itself provides a convenient

way of expressing statistical purity in quantum mechanics.

Finally, we can use the overlap formula (3.20) to represent the density-matrix
elements in a given basis in terms of the Wigner function

+00 +o0

(a’lfila) =tr{fila)(a’|} :2n/ W(q.17)Wara(q,p)dq dp. (327)

Here Wara(q, [7) denotes the Wigner representation of the projector |a)(a'|
obtained by replacing )6 by |a)(u’|in Wigner’s formula (3.17). This property
shows that the Wigner function is indeed a one-to-one representation of the

quantum state.

We may turn the tables and ask, is any normalized real function W(q, p)
always a Wigner function, that is, does it correspond to a state? Obviously it

does not, because the integral of the squared function must be less than or equal
to (21r)‘1 according to the purity relation (3.25). Another quantum constraintis

imposed on any realistic Wigner function, The values of it may range between

only in“, thatis

(3.28)
1

|W(q.p)l s —.

It
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To prove this inequality we consider a pure state ,6 2 hp) (i/zl first. We use the

Schwarz inequality to estimate the Wigner function given in terms of Wigner’s
formula (3.17) and obtain

+oc
xr>d./ l<q+a7>

(329)

W 2 1 +zxz
x

| (“)1 s
(2”), A”K;7 5

because the state vector W1) is normalized, In case of a statistical mixture the

density matrix can be represented as a sum of pure states W/qu/lal weighted
by their probabilities Pa according to the very definition (1.12) of the density
operator. Consequently, the Wigner function for a mixed state is a weighted
sum ofpure Wigner functions as well. By estimating the individual pure Wigner
functions and summing with respect to the normalized probabilities pa, we see

easily that the bound (328) is valid for mixed states, too. [Note that the Wigner
function Wn(q, p) for Fock states in) actually equals (—l)"/It at the origin
(1 = p = 0; see Eq. (383).] The constraint (328) shows that Wigner func-

tions cannot be highly peaked, meaning that the quantum “phase-space density”
cannot be arbitrarily high and Wigner functions cannot approach delta func-

tions 5(q — q0)5 (p — pa), for instance. Of course, according to Heisenberg’s
uncertainty principle, position and momentum must fluctuate statistically, and

this intrinsic uncertainty is mirrored in the uniform bound (3.28). Note that

other constraints on Wigner functions were given by Tatarskii [263] and Lieb

[175]. However, no golden rule decides whether a given function is a Wigner
function, apart from the Solomonic statement that any density matrix derived

from a proper Wigner function should be a density matrix, or have nonnegative
eigenvalues. Equivalently, all main-diagonal elements (alfila) derived accord-

ing to formula (3.27) must be nonnegative. Deviations from this law indicate

imperfections in experimentally reconstructed Wigner functions, for instance.

Apart from formula (3,22) another equivalent way exists of making quantum-
mechanical predictions, thatis, of calculating expectation values via the Wigner
function. We consider

2 2
1

(ix:—2
1

k

trimq + Mmkl = i"
35,,WGLE/l)‘5:0

+30 +00

= / W(q. mm + umk dq dp. (3.30)
00 *00

In the first line we have used key formula (3.12) for the characteristic function

W(u, 11),whereas in the second line we have used the Fourier relationship (3.4)
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between W(u, v) and the Wigner function. Comparing the powers of )t and [1.

we see that

+oc +00

um Sti"‘i7"}=/W(q,p)q"'p"dqdp. (3.31)
so 730

The symbol 5 means that we should symmetrize all possible products of the

rug—operatorsand the nfa-operators, that is, we should take the average over

all products with the right amount of 4’s and ifs. So, for example, 1/3
(iffy+ am + in?) corresponds to q2p. This Weyl correspondence [289]
is also a convenient way of making quantum-mechanical predictions in a clas-

sicallike fashion. [Note that the Weyl correspondence is completely equivalent
to formula (3.22).] Given a symmetri zed operator F , we can calculate qu antum-

mechanical averages as if F were a classical quantity. Hewever, this pleasing
property is Janus-faced. The square of F which describes the fluctuations of

)9,is not necessarily symmetrized [and the Wigner function of F2 is not always
W; (q, p)2]. We should express F

2
in terms of symmetrized operators to get

meaningful results. This route is another way in which the mutual exclusion

of certain observables sneaks in via the commutator relations of position and

momentum. So we must not forget that the algebraic structures of quantum
mechanics and classical physics are different, despite many similarities. This

difference causes a problem in the very concept of a quantum phase space even

more serious than negative “probabilities.”

3.1.3 Examples
How do typical Wigner functions look? Are they similar to classical phase-
space densities? Probably the simplest example is the Wigner function for

the vacuum state. We insert the quadrature wave function (2.33) in Wigner’s
formula (3.17) and see that the Wigner function for a vacuum is Gaussian

1
W00]: 17) =

; rem—q2— p2). (3.32)

Classically, this function would correspond to the phase-space density of an

ensemble of electromagnetic oscillators fluctuating statistically around the ori-

gin in phase space with isotropic variances of 1/2 in our units. Quantum—
mechanically, these statistical fluctuations occur even if the spatial—temporal
mode is in a pure vacuum. Figure 3.1 shows the experimentally reconstructed

Wigner function for a vacuum, illustrating beautifully the isotropic character

of the vacuum fluctuations (except for small experimental errors). How does a
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Fig. 3.1. Wigner function for a vacuum (top) and for a coherent state (bottom). We see

clearly that coherent states are just “displacedvacuums." Optical homodyne tomography
(see Chapter 5) was used to reconstruct the Wigner functions from experimentifldata.
[Courtesy of G. Breitenbach, University of Constance]

squeezed vacuum look? Let us study the general effect of squeezing in phase
space first. We obtain from Wigner’s formula (3.17)

q+2>dx
e<q+ g»dx (3.33)

$05“
1 +5:

Ws(qa 17) = 3/ exv(iPX)<q-

0c

r

2

+£x:

2 filmexp(ipx)e‘<e‘(q~§)‘pe
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Fig. 3.2. Quadrature fluctuations of a vacuum (top) and a coherent state (bottom). Ho-

modyne detection (see Section 4.2) was employed for performing the quadrature mcae

surements on stationary fields. Each point represents a single measurement result. The
reference phase (the phase of the local oscillator) was gradume shifted during the ob-

‘servation time. We see clearly the phase independence of the vacuum fluctuations and
the oscillating effect, Eq. (2.47), of phase shifts on the quadratures of a coherent suite.

The plot shows a part of the experimental data used to reconstruct the Wigner functions
of the previous figure via optical homodyne tomography (see Chapter 5). [Courtesy of
G. Breitenbach, University of Constance]

because the squeezing operator § defined in Eq. (2.82) rescales the position wave

function according to Eq. (2.79). We substitute eix with x' and get the result

Wv(£1,P) = W(€‘qs 67:1?) (3-34)

The Wigner function for a squeezed state is squeezed in one quadrature direction
and stretched accordingly in the orthogonal line in order to preserve the area in

phase space. In this way the quadrature fluctuations displayed in the Wigner
function are redistributed from one quadrature to the canonically conjugate
quantity. This redistribution is exactly what we wouldexpect from squeezing in
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phase space. Using the general result (3.34), we obtain directly from Eq. (3.32)
the Wigner function of a squeezed vacuum

1
W.(q. p) =

; exp<—eziq2~ e’z‘pzt (3.35)

As for a vacuum, the Wigner function is a Gaussian distribution with, how—

ever, unbalanced variances (2.78) indicating the effect of quadrature squeezing.
Figure 3.3 shows the experimentally reconstructed Wigner function of a sig-
nificantly squeezed vacuum generated by parametric amplification. It is an

easy exercise to calculate the distribution pr(q, 6) for phase-shifted quadra-
tures from the Wigner function (3,35) via the Radon transformation (31). We

Noise
current
[an]

150 2000 50 100

Time [ms]

Fig. 3.3. Squeezed vacuum. Wigner function (top) and quadrature fluctuations (bottom).
We see clearly a remarkable squeezing in phase space and the corresponding breathing
of the quadrature noise, Eq. (3.37). The noise trace shows a part ofthe experimental data
used to reconstruct the depicted Wigner function via optical homodyne tomography (see
Chapter 5). [Courtesy ofG. Breilenbach, University of Constance] See also Ref. [41].
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find the result

2
'1 rl/Z q

.9 : 2 A“ e — 3.36pr(q. ) (:1 Sq) XP(2A3q> ( )

with the phase-dependent variance

1
qu = §(e2§sin2 6 + 6—2;cos2 6). (3.37)

The quadrature fluctuations of a squeezed vacuum are Gaussian and, of course,

phase dependent. Their variances qu vary from %e’24to éeflcwith a period
of IL

What is the Wigner function of a coherent state? Coherent states are displaced
vacuums, so we would expect that their Wigner functions are displaced vacuum

Wigner functions, too, with a displacement given by the complex coherent

amplitude 2'/2a = qo + i p0. That this expectation is correct is easily seen,

considering the general effect of the displacement operator D in phase space

1 +00
.

x
AAAf

x

WD(4yP):'2;/exp(1px) q—EDpD (1+5 dx
700

1 +00
.

=

E L”cxr>[1(p-po)x]

x
A

x
X 4—5—40pq+§~q0 dx (3‘33)

according to the general rule (2.56) and (2.59) for displacing position wave

functions. We find that Wigner functions of displaced states are indeed just
displaced Wigner functions

Woo. p) = W(q - 610. p ~ po) (3.39)

and, consequently, the Wigner function of a coherent state is given by the

displaced Gaussian distribution

1
Wm. p) =

; CXPHq
7 mi)2— (p — pm. (3.40)

Again, the Wigner function displays the typical features of the considered quan-
tum state: A coherent state as produced by a high-quality laser has a stable

coherent amplitude q0 + i p0 that is contaminated by the unavoidable vacuum

fluctuations only.
According to the fundamental superposition principle of quantum mechanics,

we are entitled to think of quantum superpositions of coherent states. These

are states that contain simultaneously two coherent components, one pointing
in one direction in phase space and the other pointing in another. The position
wave function w of such a state would be the superposition of two coherent-state
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Fig. 3.4. Wigner function of a single photon (a one-photon Fock state) seen from above
and from below. According to Eq (3.83), the Wigner function is given by the expression
W(q, p) = exp(—q27 pl)(2q2 + 2p2 — 1)/71. Negative “probabilities”are clearly
visible near the origin of the phase space.
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Fig. 3.5. Wigner function of Schrédinger—catstates defined in Eq, (3.41), Top: 40 = 1.
The “cat" shows only a mere squeezing instead of a clear separation of two coherent

amplitudes. Bottom: q0 = 2_ First indications of two distinct humps are visible in the

quantum-interference structure.
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wave functions; for instance,

1 1
Wq) oc eXp [—§(q— 402]+ exr) [—§(q+ 402]. (3.41)

(The normalization factor is not important here and has been omitted.) The

wave function shows two peaks, one at qo and the other at —q0 according to

the superimposed coherent amplitudes. Note that this quantum superposition
(3.41) has nothing to do with optical interference. When two fields interfere,
their amplitude may be enhanced or canceled, producing, for example, coherent
states of enhanced or zero amplitude (vacuum). The quantum superposition
(3 .41) still contains both coherent amplitudes iqo. Itis also much different from

an incoherent superposition of iqo, where the field has either the amplitude +qo
or the amplitude 7% with certain probabilities. The quadrature amplitude of the

superposition state (3 .41) is +q0 as well as —q0, with a resolution given by the

vacuum fluctuations. This strange behavior of being at +q0 as well as at —q0

resembles Schrodinger’s famous Gedanken experiment about a quantum cat

being simultaneously alive and dead [246]. Therefore, states such as (3.41) are

named Schrodinger-cat states. They have not yet been observed in the optical
domain, because they are extremely vulnerable to losses. Quantum decoherence

[308] caused by linear losses is the main reason that extremely strange quantum

phenomena allowed in theory are very difficult to observe in practice. Which

observable phenomena of the Schrodinger—catstate (3 .41) would we expect?
We calculate the Wigner function using Wigner’s formula (3.17) and obtain

W(q, P) 0c exr)[—(q — qo)2— 1221+6Xp[—(q + qo)Z— p2]
+ 2 exp(—q2— p2)cos(2pq0). (3.42)

Like the wave function, the Wigner function exhibits two peaks at the coher-

ent amplitudes iqo. However. the interference structure halfway between the

peaks displays the quantum superposition of both amplitudes, showing rapid
oscillations with a frequency given by the distance 2110of the superimposed
amplitudes. See Fig. 3.6. The Wigner function becomes negative, indicating
the nonclassical behavior of the Schrodinger—catstate [47], [243]. To predict
observable effects of the quantum—superpositionstate (3.41) we calculate the

quadrature distributions pr(q, 0) via Radon transformation (3.1) of the Wigner
function (3.42) and get

pr(q. 0) 0c exr)[—(q — 40 605W] + exp[—(q + 40 MW]

+ 2 exp ( — q2 — qgcos2 9) cos(2qq0 sine). (3.43)
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Fig. 3.6. Wigner function of Schrédinger—catstates defined in Eq. (3.41) Top: q0 = 3.
Two separated coherent amplitudes are clearly visible. Bottom: qo = 4. The larger the
separation of the amplitudes, the more rapid is the oscillation in the quantum-interference
structure.
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Shifting the phase 6 turns the position quadrature distribution

1 1
pr(q) z

2 epoq
— «021+ 5 eXpl—(q +qo)2l (3.44)

(showing peaks at 2110) into the momentum distribution

prip) oc exp(—p2)cosztpqo) (3.45)

at6 = 71/2 andq = p, displaying typical interference fringes. The interference

pattern is mirrored in the highly oscillating Wigner function of a Schrodinger-
cat state.

We have seen that Wigner functions are useful to visualize the phase—space
properties of quantum states. Wigner functions display quadrature amplitudes,
their fluctuations, and possible interferences

3.2 Other quasiprobability distributions

In many respects the Wigner representation appears as the best compromise
between a classical phase—spacedensity and the correct quantum—mechanical
behavior. The Wigner function generates the right marginal distributions and

it obeys the overlap relation (3.20) for calculating expectation values in a clas-

sicallike fashion. Yet the Wigner function may be negative. Is there a way to

define a strictly nonnegative quasiprobability distribution? Which other useful

quasiprobability distributions can we define?

3.2.1 Q function
We may smooth the Wigner function W(q, p) by convolving it with a Gaussian

distribution having the same width as vacuum to obtain the Q function
1 +oc +00

2QM, p) E -/ Whig p’) eXi>[~(q , q’)2- (p - p’) ldq’dp’~
71 —oo —oo

(3.46)
What does this expression mean? We recall the overlap relation (3.20) and the

formula (3.40) for Wigner functions of coherent states. We see immediately
that the Q function gives simply the probability distribution for finding the

coherent states lot) with a : 2—1/2(q+ ip) in the state x3,because
1

Q01, 17)= —2trifilafldll7r

1
= 701mm). (3.47)

2n

(Note also that 7t"(alfilot) is frequently called the Q function.) Clearly. the
Q function is nonnegative and normalized to unity, as is easily seen from the
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completeness relation (2.67) of the coherent states. Consequently, the Q func—

tion can be regarded as describing probability densities. In fact, we will consider

in Chapter 6 a scheme to measure the Q function directly as a probability dis—

tribution. We also see that the negative regions of the Wigner function cannot

be extended over areas significantly wider than 1/2; otherwise, the Q func—

tion could be negative. (This property puts yet another constraint on Wigner
functions.) Roughly speaking, the Gaussian smoothing (3.46) means takingr the

average of W(q’, p’) values in a circle area around (q, p) with a radius given
by the vacuum fluctuations. Because any negativities disappear after this pro-

cedure, they must be concentrated in small regions of the Wigner function. The

resolution of these negative “probabilities"requires an accuracy in the order of

the Vacuum fluctuations.

The smoothing of the Wigner function is also clearly seen in the Fourier—

transformed Q function Q04, U). In fact, we obtain from the definition (3.46)
+30 +30

Q(u,u)5/ Q(q,p)exp(iiuq—ivp)dqdp (3.48)

- 1
= W(u. v) exp [—1042+ 1%)]. (3.49)

Because details of the Wigner function correspond to high—frequencycompo—

nents (u. v), these details are suppressed in the Q representation.
Eq. (3.49) reveals also anotherimportant property of the Q function. We use

the formula (3.12) for the characteristic function W(u, v) and obtain

- l
Q = tr{/3exp[7 1042+ v2)]exp(iiur} 7 mm} (3.50)

or, introducing the complex notation ,3 : 2"/'2(u + iv),
e 1
Q = tr{fiexp(—Elfilz)exp(—ia,s*— with} (3.51)

because Z; = 2’1/Z(t§+ i [7). Finally, we employ the BakeriHausdorff formula

(2.55) and get

Q = tr{fiexp(7i&f3*)exp (45%)}. (3.52)

Consequently,
3" 8" -

I AAUA‘hA
=

‘UTllr{pa a } l

35*" 3’3“
Q

fl=fi*:0
+00 +30

:/ Q(qa mafia” dq dp (3.53)
—00 - 700

using the definition (3.48) of the Fourier—transfonned Q function in the complex
notation a = 2’”2 (q + ip). Expectation values of the form til/354%”)are
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called antinormally ordered. We have seen that we can express these quantities
in terms of the Q function as if 12 and [17‘were classical amplitudes and not

operators, We note, however. that this property relies critically on the ordering
(Trim, and it is clearly lost when powers (13?th are concerned. (Remember
the discussion at the end of Section 3.1.2.)

3.2.2 P function
In the theory of photodetection (see for instance Ref. [187], Chap. 12), normally
ordered expectation values tr{I313ma”)play a distinguished role. How can we

find the phase-space correspondence for normal ordering? We simply reverse

the order of the exponentials expkififi") and exp( 4&1 ,3) in the expression
(3.52) to define a new function

Pm, v) E tr{/3exp (4am) exp(7i&f3*)} (3.54)

with the convention )3 = 2—1/2(u+ iv). Using the same arguments as in the

previous subsection we see that the P function
1 +00 +oc

~

P(q,p)2 (2702// P(u.v)exp(iuq+iup)dudv (3.55)

corresponds to the normal ordering
+30 +00

tr{,3al“a"}= / / P(q,p)a*"ot”dq dp (3,56)
,3. . -00 .

with a = 2’1/2(q+ i p). Because normally ordered quantities are quite funda—

mental in quantum optics, the property (3.56) is one reason that the P function

(also called the Glauber—Sudarxhan function [1061, [261]) is a rather popular
phase—spacedistribution. Yet another reason is that the 1’ function diagonalizes
the density operator in terms of coherent states. To see this property, we argue

along similar lines as in the previous subsection where we started from (3.49)
and arrived at (3.52). Here we do the necessary algebra in reversed order —

we start from the definition (3.54) and arrive via the Baker—Hausdorff formula

(2.55) at

Wm. u) : Pm, v) exp Hm?+ vb]. (3.57)

Consequently.
+oc +30 1

Wm p) = / / P010470);epoq
7 (ml — (p 7 120?]qu dpo.

(3.58)

We recall the formula (3.40) for Wigner functions of coherent states la) with

a : 2—1/2(q0+ ip0), and we use the general correspondence between the
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Wigner function and the density matrix to obtain the famous result [261] (called
the optical equivalence theorem [137])

+00 +00

.6: / / P<qo,po)ia)<aidqodpo. (3.59)

At first glance this formula appears as a representation of the quantum state

in terms of a distribution of coherent states, that is, as a statistical mixture of

classical amplitudes. This is impossible! There is no way to represent a pure
state W) as a mixture of coherent states, unless W) itself is a coherent state.

Yet the algebra to arrive at the result (3.59) is correct. What is wrong? The

answer is that the P function might be very ill—behaved. For instance, we see

from Eq. (3.57) that the Wigner function is a smoothed P function. Because

the Wigner function can display negative “probabilities" the P function might
behave even worse, that is, it might be negative or it might not even exist as a

tempered distribution. (States having such P functions are called nonclarsical

states. See the discussion at the beginning of Section 2.2.3.) Because the P

function is such a delicate mathematical construction, there is no practical way
to reconstruct it from experimental data.

3.2.3 s-parameterized quasipmbability distributions

We may also convolve the Wigner function with Gaussian distributions hav—

ing a width different from what would correspond to the vacuum noise. In

this way we obtain a whole family of distributions called the s—parameterized
quasiprobability distributions W(q, p; x) [51], [52], [156]. First, we define the

characteristic functions

W04,112s) E W(u, v) exp [3042+ 13)]. (3.60)

For historical reasons [51], [52] the real parameters happens to be negative when

the Wigner function is smoothed. We see from definition (3.60) that in this case

the distribution is indeed suppressing high frequencies (u, u) describing details

in the Wigner function. The s—parameterizedquasiprobability distributions are

obtained from the characteristic function via inverse Fourier transformation
1 +00 +00

~

W(q, p; s) E (2702/ W(u, U; s) exp(iuq + ivp) dudv. (3.61)

Obviously, all previously studied quasiprobability distributions are included in

this family of functions because they correspond to the parameters

+1 : P function,

5 = 0 : Wigner function, (3.62)
—l : Q function,

—0c 730
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respectively. In this way the defined distributions interpolate between the P,
the Wigner, and the Q function. The range of 3, however, is the whole real

axis. Note that it is also possible to define quasiprobability distributions corre-

sponding to complex 3 parameters [300].
Let us study some general properties of .v—parameterizedquasiprobability

distributions. Of course, they are normalized to unity because
+00 +00

_

/ W(q, 17; SM!) dp = W(0. 0:, x) = 1. (3.63)
00—00

We obtain from the obvious relation

- - 1 ,

W(u, v; s) = W(u, v; s’) exp [1(5— s )(u2 + 19)] (3.64)

the formula

1 +00 +00

W(q., pm) = —,~—/ W(q’, p". s’)
”(S _ 3') +90 +00

((1 — q’)2+ (p — p’)2
(S’ — A')

provided that x < s’ so that the integral converges. This relation shows that

there is a smoothing hierarchy among the s-parameterizedquasiprobability dis—

tributions. The smaller the parameters is, the more the distribution is smoothed.

Moreover. the marginal distributions pr(q. 6; s) of smoothed Wigner functions
(s < O) are smoothed accordingly. that is.

x exp[— ]dq’dp', (3.65)

+30

pr(q, 6.: s) E W(q cost) 7 psiné), q siné) + pcosH; s)dp (3.66)
+00

+30

= (”MVW/pr(q’,6)ext3[*lA‘l"(q-q")zldq’. (3.67)
*OO

because the Wigner function has the quantum—mechanicallycorrect marginals
pr(q, 6). Additionally, the overlap relation (3.20) must be modified for S-

parameterized quasi probability distributions because

A A
+00 +00

tr{F1F2}=2n/W1(q,P)W2(qu)dqu’OC —w

1 +00 +00
i W104.u)W2(+u, 7v) dudv
277

. +00 .+oc

1 +00 ~+0c
~ ~

= 7 W1(u., v: s)W2(—u, —v; —s) du dv. (3.68)
271. +00 .m

Consequently, we obtain

+00 +00

trmfiz} = 2n / W1(q,p:A‘)W2(q,p;+x)dqdp (3.69)
+00 .730
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and in particular
+00 00

trmF}:2n/ W(q,p;s>wF(q.p;—s>dqdp. (3.70)
. —OC —00

This relation shows that a smoothing of the quasiprobability distribution must

be compensated for by an enhancement of the resolution of the filter func-

fion Wp (q, p) to calculate expectation values. and vice versa. This procedure
may cause significant problems because it requires extremely high accuracy for

W(q, p; s) andit may involve singularfilter functions WF (q, pf. s). We see that

the price to be paid for having a nonnegative quasiprobability distribution is the

introduction of additional noise in practical applications. This noise appears in

the smoothing of the marginal distributions. and it must be compensated for by
enhancing filter functions to correctly predict observable quantities. Finally,
we also note that a certain r-ardering of operators [52] can be defined to cal-

culate expectation values. However, apart from the normal ordering for the P

function, the symmetric ordering for the Wigner representation, and the anti—

normal ordering corresponding to the Q function, these ordering procedures
are involved. The reader is referred to the comprehensive articles by Cahill and

Glauber [5 l ]. [52] for the details.

3.3 Examples
How do Q functions look? How smoothed are they compared with Wigner
functions? How singular can a P function be? Let us study some examples.
The simplest candidate to consider theoretically is a Fock state in). We see

immediately from formula (3.47) and the Poissonian photon statistics (2.64) of

a coherent state that the Q function of a Fock state is given by
1

901.12) = 71mm;7'!

= exv(—la12)lalz” (3.71)
27m!

1 1 2 2 q2+p2 n

= ——

. .722”"!CXP[2(1)+11)“2 (3 )

According to the Gaussian approximation for the Poissonian distribution [279],
[241] we can approximate (3.72) for large quantum numbers and get

Q. ~ eXpi—(r — m (3.73)213/21"
with

r = x/q2 + p2 (3.74)
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and the Bohr—Sommerfeld radius [79]

r,, = x/Zn +1. (3.75)

We see that the Q function of a Fock state describes a ring with the Bohr—

Sommerfeld radius r,1 in phase space. This illustrates that Fock states are typical
particlelike states containing exactly n energy quanta and showing no wavelike

phase dependence. The P function for a Fock state is obtained from Eq. (3.72)
by Fourier transformation according to the general relations (3.60) and (3.62).
The result

1 q2 + pz 1 32 32 n

P : — e 7 ) 8 8 3.76
n! xp(2 2 at]. +3172 (q) (p) ( )

indicates clearly that Fock states are indeed nonclassical because their P func—

tions contain derivatives of the two-dimensional delta function 82(01).(The only
exception is obviously the vacuum state with n 2 0.) This example illustrates

the mathematical subtleties involved in the P representation.
Let us consider another example, a thermal state, with density operator

fi = (1 — e’B)Z trimmer”. (3.77)
n=0

Here )3 denotes the ratio hw/ k B T of the energy ha) and the temperature T. (As
usual k 3 denotes Boltzmann‘s constant.) To justify the formula (3.77) we recall‘
that in thermal equilibrium the density operator must be diagonal in the energy

representation and that photons obey the Bose statistics. We use expression
(3.71) to calculate the Q function of the thermal state (3.77)

i
°°

i
_

_ 7‘9 _

2
_

2 —fl IL

Q(q,p)—<1 e )—2”exp(tanniomuale)

= in — e’BRXPI—lalzfl— 65)] (3.78)
271

: in — erbexp [—1012+ pz)(l—e’fi)].(3.79)
271 2

The Q function is a Gaussian distribution centered at the origin in phase space.
In the limiting case of vanishing temperature, we obtain the Q function Q0(q. p)
of a vacuum, whereas for finite temperature the Gaussian distribution (3.79)
is accordingly broader. This difference illustrates the additional fluctuations

involved in a thermal state. Using Fourier transformation we obtain from the

Q function (3.79) the Wigner function for a thermal state

1
W(q. p) =

; tanh(fi/2)exp[—(q2+ p2)tanh(fl/2)l. (3.80)
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Fig. 3.7. Q functions of a Fock state (top), Eq, (3.72), and of a phasevrandomized
coherent state (bottom), Eqs. (3.90) and (3.75), with n = 4. Although the states are

quite different, the Q functions are similar,
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Like the Q function, the Wigner function displays the additional thermal fluc—

tuations as well. Note that formula (3.80) also reveals the P function for the

thermal density operator (3.77) by Fourier transformation

1 '7 '7

Pat. p) = ;(e" A DEXpl—(q‘ + p“)(e’941)]. (3.81)

The P function of a thermal state is a well—behaved positive function that can

be rightfully regarded as a probability distribution. In this sense thermal states

are classical states. According to Eq. (3.59) the P function diagonalizes the

density operator in terms of coherent states. So instead of seeing the thermal

state as a statistical mixture of nonclassical Fock states. we may unravel the

thermal density operator (3,77) into a Gaussian distribution of coherent states,
that is. into an incoherent mixture of states with well-defined amplitudes and

phases. In this way we find a satisfying physical interpretation of thermal states

and simultaneously a good example to demonstrate the general ambiguity in

unraveling a mixed—state density operator. See Section 1.3.4.

Formula (3.80) reveals the Wigner function W,, (q. p) of Fock states as well.

We expand W(q. p) in terms of 6”

WI;’ p) 2 (1 — e”) 2 Wm. pie” (3.82)
71:0

with
_1 n

7

wntq, p) =

( )
exm—q‘ — p2)Ln(242+ 2112). (3.83)

Here the L. (q) denote the Laguerre polynomials. and we have utilized their

relation
00

Z Lam" = (14 z)" 6Xp[q1(z —1>*'i (3.84)
n=0

See Ref. [89]. Eq. 10.12(l7). Because the thermal density operator (3.77) is

expanded in the same way as the expression (3.82). the W”(q. p) must be indeed

the Wigner functions for the Fock states In). Figure 3.8 shows that in contrast

to the Q function. the Wigner function for a Fock state displays a “wavy sea”

of rings in the area enclosed by the Bohr—Sommerfeld band [79]. This feature

illustrates again that Fock states are clearly nonclassical. Note that the “wavy
sea” is necessary to guarantee the orthogonality of the Fock states because the

overlap oftwo Wigner functions W”(q , p) and W,,r(q . p) must vanish according
to formula (3.23). The transition to the Q function. however, smoothes out the

waves, and only the Bohr—Sommerfeld ring at (2n + 1)”2 remains. This result

shows strikingly that the Q function displays far less signature of a quantum
state in phase space than does the Wigner function.

We can see this another way. Significantly different quantum states may

create similar Q functions. Given a picture of a Q function. it may be difficult
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Fig. 3.8. Wigner function of 21 Fuck state with n = 4 (top), Eq. (3.83), compared with
the Q function (bottom), Eqi (372). The plot range for the Q function was set to half
of the range for the Wigner function to visualize the differences between the Q and the

Wigner representation.
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to infer the state behind the picture. Probably the best example to demonstrate

this is a Schrodinger—catstate

W) (X lore) + I — an) (3.85)

(we omit the normalization factor). Using the scalar—product(2.66) of coherent

states, we obtain immediately from formula (3.47) the Q function

9(a) cx epoa — Ololz)+ exIS(—l¢1+ excl?)

+2exp(—lot|z— |a0|2)cos[21m(a*a0)]. (3.86)

All that is left from the beautiful quantum—interferencestructure clearly dis—

played in the Wigner function (3.42) is an exponentially small bump propor—
tional to exp(— laolz). The more macroscopic the quantum superposition (3.85)
is, the smaller is this term, lfwe neglect the little hump we obtain the Q function

of the incoherent mixture

1
l3 : EUQOHQOJ+ IraoH’aol). (3-87)

The Q function cannot clearly discriminate between macroscopic superposir
tions and statistical mixtures, that is, between the classical either at) or —(X0

and the quantum—mechanical010 as well as *(10.

Another example is a phase—randomizedcoherent state having the density
operator

A

2"
_. 2 . ,1 7 . d¢p=/ |2 / rneXP(1¢))(2 /'r,1exp(1¢)l~ (3.88)

0 27!

with the Bohr—Sommerfeld radius rn defined in (3.75) . This state creates almost

the same picture as a Fock state in the Q representation. The Q function of a

coherent state is

l l 1 ’3

W. p) :

5 exp [7“— ‘10)2— 5(1)
— pot]. (3.89)

as is easily obtained from the Wigner function (3.40) or, alternatively, from the
scalar product (2.66). Consequently, the Q function of the phase—randomized
coherent state (3.88) is given by

2

using Ref. [225], Eq. 2.5.40.3, to perform the (1:integration. Here In denotes
the zeroth modified Bessel function of the first kind, and the radii r and r” have
been defined in Eqs. (3.74) and (3.75). According to the asymptotic behavior
of the Bessel functions for large arguments, expression (3.90) tends rapidly to

l
Q(r) = 71exp [——(r2+ rf)]10(rr,,)(3.90)7!
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the approximation
1 2

Q N

W ”PI-(r 7 r") 1 (3.91)

for large quantum numbers. See Ref. [89], Eq. 7.13.1(5). Similar to Fock

states, the Q functions of phase-randomized coherent states describe rings in

phase space. The only difference is that the rings are broader by a factor of

2'”. Yet the states and their physical properties are significantly different. For

instance, the photon stati stics of phase-randomized coherent states i s Poissonian

(2.64). (Phase changes do not affect the photon statistics.) In the limit of large
intensities the photon distribution (2.64) becomes extremely broad because the

variance equals the mean for Poissonian statistics. Fock states, however, always
have a precise photon number. Paradoxically, in the region where the photon
distributions of phase—randomizedcoherent states and of Fock states are vastly
different, their Q functions are very similar. The Wigner functions, however,
differ significantly.
Nevertheless, both the Q function and the P function are mathematically

equivalent to any other representation for quantum states, and we are entitled to

use this equivalence in tricks to derive theoretical relations. On the other hand,
when the Q function is numerically or experimentally given, the retrieval of

details hidden in the Q function (but clearly displayed in the Wigner function)
takes significanteffort in precision. In any case, we must perform a deconvolu—

tionlike procedure that is typically delicate. This fact motivates the conclusion

that experimental efforts should be aimed at measuring the Wigner function

rather than the Q function to determine the quantum state. The measurement

or even the reconstruction of the P function is clearly beyond feasibility, be—

cause this mathematical object might be ill—behaved, as we have seen in the

case of a Fock state.

3.4 Further reading
Apart from Wigner’s Wigner function [290] defined in the phase space of posi—
tion and momentum, otherpossibleWigner functions exist for different systems.
For instance, spin systems may be described by continuous Wigner functions.
See G.S. Agarwal [3]; JP. Dowling, G.S. Agarwal, and WP. Schleich [80]; M0.

Scully [248]; L. Cohen and M0. Scully [57]; M0. Scully and K. W6dkiewicz

[249]; M0. Scully, H. Walther, and WP. Schleich [250]; K. Wédkjewicz [295];
and J.C. Varilly and J.M. Gracia—Bondia [277].
The discrete Wigner functions are another intriguing class of quasiprobabi lity

distributions for finite—dimensional systems. See the interesting paper by W.K.
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Wootters [298] for prime—dimensionalstate spaces and the extension to odd—

dimensional systems by O. Cohendet, Ph. Combe, M. Sirugue, and M. Sirugue—
Collin [61], [62]. Wigner functions for even dimensions are a bit odd, and

they, together with the odd—dimensional ones, have been considered in a brief

communication [165] and in a detailed paper [170]. Moreover. a discrete Q
function has been defined by T. Opatmy, V. Buick, J. Bajer, and G. Drobny
[203] and extended to discrete .r—parameterizedquasiprobability distributions

by T. Opatmy, D.—G. Welsch, and V. Buiek [204].
Also. Wigner functions for angular momentum and phase have been con—

structed by N. Mukunda [192] and LP. Bizarro [31]. Wigner functions for

photon—numberand quantum—opticalphase have been given by WP. Schle—

ich, RJ. Horowicz, and S. Varro [242]; LA. Vaccaro and D.T. Pegg [271]; A.
Luks and V. Pefinova [183]; and. finally, in a communication [272] and in a

comprehensive paper [274] by J .A. Vaccaro.


