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Quasiprobability distributions

31 Wigner representation
lassical optics the statcof iltotsperfetly deseribed
by the statistics of the classical amplitude . Tl itude may be
fixed (then the field is coherent), or o may fluctuate (then the field is pummllv
coherent or incohercnt). In classical optics as well as in classical mechanics,
we can characterize the statistics of the complex amplitude a or, equivalently,
the statistics of the components position ¢ and momentum p introducing a
phase-space disiribution W(g. p). (As explained in Section 2.1, the real and
the imagiaary past of the complex smplitudea can be rogarded as he position

of the illator.) The distribution W (g, p)
cuantifics the probabilty of incing  paicutr pair ofq and p values i their
Knowing the ph bability distribution,

all staistical quantities of the electromagneric oscillator can b prodicied by
galculation. In this sense the phase-space distribution describes the state in
Classical physics. Al this is much more subile in quantum mechanics. First
of all, Heisenberg’s uncertainty principle prevents us from observing position
and momentum simultancously and precisely. So it seems there is no point
in thinking ubout quantum phase space. But wait! In quantum mechanics we
cannot directly obser weare
entited to use the concept of states as If they were existing entties (whatever
they are). We use their properties fo predict the staistics of observations.
Why not usc a quantum phase-space distribution W(g, p) solely o calculate
fashion? Clearly, the concepl of quantum
phase space must contain a certain flaw. ‘The probability distribution W (g. )
could become negative, for instance, or ill-behaved. Also, the classicallike the
fashion of making statistical predictions may seem 1o be classicallike at the first
glance but not at the second. For these very reasons we should call W(g, p) a
quasiprobability distribution. Furthermore, there are certainly infinitely many
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ways of making up quasiprobability distributions (simply because there is no
way of defining them properly). Which one shall we choose? I there a royal
road 10 quantum phase space’

3.1.1 Wigner’s formula
Bertrand and Bertrand [29] had the brilliant idea of defining the quasiprobability
distribution W (g, p) by postulating its properties. Just one postulate turns out
tobe sufficient. Let us assume that the distribution W (g, p) behaves like a joint
probability distribution for ¢ and p without ever mentioning any simultancous
observation of position and momentum. What can we say about classical prob-
ability distributions? The marginal distribuiions o other words, the reduced
distributions (¥ Wig. p)dp or [ W(g. p)dg must yield the position or
the momentum distibution, respectively. Additionally, if we perform a phase
shift ¢ all complex amplitudes are shifted in phasc, meaning that the compo-
nents ¢ and p rotate in the 1wo-dimensional phase space (g. p). A cmsxcux
probability distribution for position and momentum values would
ingly. In view of this fact we postulate that the position probability distribution
prig. @) after an arbitrary phase shift ¢ should equal

= (@l ® I O)lg)

prig,6

o
/ Wigcost — psing, gsind +pcosé)dp.  (3.1)

This single formula marties the quasiprobability distribution W (g, p) with
quantum mechanics. The same formula tics W (g, p) to observable quantities.
And, even more remarkably, the formula links quantum states 1o observations.
Considering special cases of formula (3.1) we sce that the marginal distribu-
tions of W (g, p) produce the correct position and momenium probabilitics,
respectively. For & = 0 we obtain

.
[ wanar =i 62

and for 6§ — 7/2
. o
lin) = [ We-g. prig f Wa.pdg. (3

[To justify Eq. (3.3) we note that &/ (x/2)l¢} is a momentum eigenstate |p =
g} with eigenvaluc ¢ according to Eq. (2.15).] Integrals such as (3.1) are
called Radon transformations [226], and they are thoroughly studied in the
‘mathematjcal theory of tomographic imaging [113], 1194]. The inversion of
the Radon [226] plays a disti role in In
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quantum:state tomogtaphy the inverse Radon sransformation turms out 10 be

the key for q ion. See Section 5.1.1.
Why is postulate (3.1) sufficient? To understand the reason we introduce the

Fouricr-transformed disteibution W (#, v) called the characteristic function

400 proc
,/ / Wig, pYoxp(—iug —ivpddgdp (34

ibution pr(t. 6)

W,

and the Fourier-transformed position probability di
PrEE) = /+ prig. 8) exp(—ikg) dq. (3.5)
On the other hand, the basie postulate (3.1) for W(g. p) requires that
P, 0) = [ [ Wiy’ p) exp(—ikq) dq dp, (3.6)
with the abbreviations t

4'=qeosh — psind and p’ =gsing + pcosd [EX))

Consequently, ¢ is given by
g=4q s + p'siné. (8

‘We change the integration variables from (', p')10 (¢. p) and obtain, according
10 the very definition of the characteristic function (3.4),

PrE, 8) = W(E cos b, £ sin). 39
The Fourier-transformed position probability distribution is the characteris-
tic function jn polar coordinates. In this way the two functions are intimately
related. So far we have used only the second line of the fundamental postu-
fate (3.1 or. 50 to say, the classical nature of the quasiprobability distribution
W(g, p). The quantum features come into play when we substitute the first
line, that is, the definition of pr(g, 8) in the Fourier transformation (3.5). We
obtain explicitly

i
w0 = [ Q0@ O exnc-iga) dg

™
= / (qlU @)U (0) exp(~iéPlq) dg
=tr{0(@)p 0" @) exp(—igd)}
=te{pU B exp(—i&NT O }. (3.10)
We use the rotation formula (2.15) for the quadrature operators to get

7@ exp(—i£§)0 (8) = exp(—igk cos§ — i pE sind) [ERDD)
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This is the Weyl operator [289] c‘(p( -iug = ivf) in polar coordinates. The
Fourier transform pr{§. #) function in polar
as we have learned from Eq. (3.9). Consequently,

W, v) = tr{p exp(—iug — ivp)) (3.12)

The characteristic function is the “quantum Fourier transform” of the density
operator. Because the characteristic function W (i, v) is the Vourier transform
of W(g, p) by definition, the quasiprobability distribution W (g, ) should be
very closcly related to the density operator. Indeed, both are one-to-onc repre
sentations of the quantum state, as we will show in the next subscction, 3.1.2.
Let us calculate the trace in Eq. (3.12) in the position representation. We use
the Baker-Hausdordf formula (2.55) 10 reexpress the Weyl operator

exp(—iug —wp) = cxp(f 7 ) expl-ig) exp(—
“The operator exp(—ivp) shifts the position eigenstates |4) by v to produce
Ig + v} because of the retation (2.21) between the position and momentum
eigenstates. Consequently,

4o
Wi v‘h/ {glpexp(—iug — ivp)lg) dg

\ e
)/ (s exp(-iug)lg +vidg.  (3.14)

We replace ¢ by x — v/2 and obtain the compact formula

a . v
/_m cxp(—m»<x 3

To derive an explicit expression for the quasiprobabitity distribution Wi(g, p),
we simply invert the Fourier transformation in definition (3.4) and get by virtue
of formula (3.15) for the characteristic function

1 e e
a )Z/ / W u, v) expliug + ivp) du dv

NG

x exp(—iug’ + iug + ivp) dg’ du du

TN

X84’ — ) dvdy'. @.16)

Wi,

{3.15)

Wi.p) =

7|

N
4+ 5 ) explivp)
/
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Setting x = v we obtain, finally,

W )_1 i . \’ x
=5 /m ewnips (-3

This is Wigner's legendary formula [290] for a classicallike phase-space dis-
tribution in quantum mechanics called the Wigner fincrion. It appeared for the
first time in his 1932 paper [290] “On the Quantum Correction for Thermody-
namic Equilibrium?* Tt was “chosen from all possible expressions, becaus
seems 1o be the simplest”*

a+ §>;Ix, ERE))

3.1.2 Basic properties
Wigner's representation of quantum mechanics has found many applications
in broad areas of quantum physics. It was used whenever quantum corrections
to classical laws were of interest, as in Wigner’s 1932 paper [290]. Countless
articles have been writien on the Wigner function itsclf. Because there is room
neither for mentioning all of them here nor for deriving all known properties
of the Wigner function, the reader is referred to Moyal's arly yet excellent
text [191]and to the more recent review articles by Tatarskii [263]; Ralazs and
Jennings [10]; Hillery, O*Connell, Scully. and Wigner [116]; and Lee [149]
and to the book [135] by Kim and Noz. Here we will focus on only the basic
properties of the Wigner function. Lirst, we note that the Wigner function is real

W(g, p) = Wig, p) (3.18)
for Hermitian operators 4. This property is verified by considering the com-
plex conjugate of Wigner’s formula (3.17) and replacing x by —r. The Wigner
function is normalized

-
/ / W(g.p)dgdp=

asis easily seen from Wigner’s formula (3.17), because the density operator 5
is normalized so that tr{ 5} = 1. $o far the Wigner function shows featurcs of
a proper probability distribution.

A remakable property of the Wigner representation s the overlap formula

(3.19)

. +oe 400
mﬂF:):z.—:/ / Wilg. p)Walg. pYdgdp (3.200

for the Wigner functions Wy and W of two arbitrary operators £, and £3. Both
operators are not cven requited to be Hermitian, and we have used Wigner's

A fooltote. however, suys that “Ihis expression was found by L. Szilard and [E.P. Wigher] some
years ago for ot purposc
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formula (3.17) with £ instead of 4 to define a Wigner function forthe £ op-
crators. The proof of the overlap formula (3.20) is a straightforward calculation
using Wigner's expression (3.17) for the right-hand side

b0 phon proo ph o
=1 L L cxpllp(xv+t:)l<q*;‘
X2

(o2
hoo pro x| A x X
:/N /K <q—2‘F1‘q+§><q+§ Fy

too phoo L
:/ /‘(a’[f]\q”rlq”\quMlq'th”

Blg +%>dndndqdp

o
- [Tk

=tr(FFy). 3.21)
Why is the overlap formula remarkable? We can use it for calculating expec-
tation values

4o pao
wfp £ :27{/ / Wi{g, p)Wr(q. p)dq dp. (3.22)

) This equation would be the

(We have simply replaced £y by 6 and £3 by
rule for predicting expectations in classical statistical physics, too. The Wigner
function W (g, p) plays the role of a classical phase-space density, whereas
Wr(g. p) appears as the physical quantity that is averaged with respect to
Wig. p). This is exactly the classicallike fashion of calculating quantum-
‘mechanical expectation values we were seeking. We can understand formula
(3.22) another way by sceing W(¢. p) as a filter function. Consequently, all
that quantum mechanics allows us to predict are filtered projections of the
Wigner function. All that we can see are shadows of the states, very much in
the sense of Plato’s famous parable [219] mentioned in the introduction, yet
formulated more precisely. that is, more quanivatively.

Another simple consequence of the overlap formula (3.20) s the expression

i i
b=z [ [T wepmepas  em

for the transition probability hetween the pure states |) and |y2). However,
this quantity vanishes if the states [y/1) and [} are orthogonal

W 1 y2) = 0. (3.24)
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The overlap (3.23) of two positive functions W and W, cannot be zero. Cons
quently, Wigner functions cannot be positive in gencral. (In fact, states having
Gaussian wave functions are the only pure states with nonnegative Wigner
functions. See | 119]. [185], and |263].) n this way the overlap formula (3.20)
reveals strikingly both the similarities and the differences between a classical
probability distribution and the Wigner function. Quantum interference im-
plies that the classicallike Wigner function cannot be regarded as a probability
distribution but as a quasiprobability distribution only. This ptoperty s one
way in which the unavoidable flaw in the concept of quantum phase space may
appear. Negative regions in the Wigner function of a given state can be seen as
signatures of nonclassical behavior [185].

Using the overlap formula (3.20) we are also able to quantify the purity of a
quantum state. Tn fact. identifying both £ and £> with 5 we obtain

foo g
Ir(ﬁz):Zn/ / Wi(q. p)2dgdp. (3.25)

The purity tr| 5%} ranges between zero and unity and equals exacdy unity if
and only if the statc is pure (5 = [¥)(¥). According to relation (1.21) the
von-Neumann entropy § is bounded by

N

o pheo
twpnp) > 1 —Zn/ / Wig, p)*dg dp. 3.26)

‘We sec that the overlap of the Wigner function with itself provides a convenient
way of expressing statistical purity in quantum mechanics.

Finally, we can use the overlap formula (3.20) to represent the density-matrix
elements in a given basis in terms of the Wigner function

420 p4os
(a'\ﬁla)=lr(/7\a‘r(a’llf27r/ / Wig, PYWaalg, p)dg dp. (327)

Here Wya(g. p) denotes the Wigner representation of the projector |a)(a’|
obtained by replacing 4 by |a)(a’| in Wigner's formula (3.17). This property
shows that the Wigner function is indeed a onc-to-one representation of the
quantum state.

We may tum the (ables and ask, is any normalized real function W (g, p)
always a Wigner function, that is, does it correspond to a state? Obviously it
does not, because the integral of the squared function must be less than ot equal
t0 (27)~" according (o the purity relation (3.25). Another quantum constraintis
imposcd on any realistic Wigner function. The values of it may range between
only x", that is

(3.28)

1
Wig. p)l = —.
Wig.p) = -
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To prove this incquality we consider a pure state 5 = |¥) (| first. We use the
Schwarz inequality to estimate the Wigner function given in terms of Wigner's

formula (3.17) and obtain
L N N
W ps o [ (e ax [ [(arglv -
(3.29)

because the state vector |) is normalized. In case of a statistical mixture the
density matrix can be represented as a sum of pure states [} (3| weighted
by their probabilities o, according o the very definition (1.12) of the density
operator. Consequently, the Wigner function for a mixed state is a weighted
sum of pure Wigner functions as well. By estimating the individual pure Wigner
functions and summing with respect to the normalized probabilities p,, we see
casily that the bound (3.28) is valid for mixed states, too. [Note that the Wigner
function W,(g. p) for Fock states |n) actually equals (~1)"/7 at the origin
g = p = ; see Fq. (3.83).] The constraint (3.28) shows that Wigner func-
tions cannot be highly peaked, meaning that the quantum “phase-space density™
cannot be arbitrarily high and Wigner functions cannot approach delta func-
tions 8(g — ¢a)3(p — po), for instance. Of course, according to Heisenberg’s
uncertainty principle, position and momentum must fluctuate statistically, and
this intrinsic uncertainty is mirrored in the uniform bound (3.28). Note that
other constraints on Wigner functions were given by Tatasskii [263] and Lieb
[175]. However, no golden rule decides whether a given function is a Wigner
function, apart from the Solomonic statement that any density matrix derived
from a proper Wigner function should be a density matrix, ot have nonnegative
eigenvalues. Equivalently, all main-diagonal elements (alla) derived accord-
ing to formula (3.27) must be nonnegative. Deviations from this law indicate
in y Wigner functions, for instance.

Apart from formula (3.22) another equivalent way exists of making quantum-
‘mechanical predictions, thatis, of calculating ex pectation valucs via the Wigner
funetion. We consider

2

B

JN N ¥
wWp(g + pp)ty =7 @w(sz. £))

t=0

1o proc
:/ / Wig, p)(ag + up¥ dqdp.  (3.30)

Inthe first line we have used key formula (3.12) for the characteristic function
W (u, v), whereas in the second line we have used the Fourier refationship (3.4)
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petween W (x, v} and the Wigner function. Comparing the powers of A and z
we see that

wpSG" P’ )*/ / W(q. p)g" p" dqdp. 331

The symbol & means that we should symmetrize all possible products of the
m g-opeators and the np-operators, that is, we should take the average over
all products with the right amount of §’s and p’s. So, for cxample, 1/3
@ + @i + pd*) corresponds w g>p. This Weyl correspondence [289]
is also a comvenient way of making quantum-mechanical predictions in a clas-
sicallike fashion. | Note that the Weyl correspondence is completely equivlent
toformula(3.22).] Givena £,
‘mechanical averages as if £ were a classical quantity. However, this pleasing
property is Janus-faced. The square of £, which describes the fluctuations of
£.is notnecessarily symmetrized [and the Wigner function of #*is notalways
We(g, p)?]. We should express £~ in terms of symmetrized operators to get
‘meaningful results. This route is another way in which the mutual exclusion
of certain observables sneaks in via the commutator relations of position and
momenium. So we must not forget that the algebraic structurcs of quantum
‘mechanics and classical physics are different, despite many similarities. This
difference causes a problem in the very concept of a quantum phase space even
‘more serious than negative “probabilitics.”

3.1.3 Examples
How do typical Wigner functions look? Are they similar to classical phase-
space densities? Probably the simplest example is the Wigner function for
the vacuum state. We insert the quadrature wave function (2.33) in Wigner's
formula (3.17) and see that the Wigner function for a vacuum is Gaussian

1 P
—exp(—g” — p
kS

Wolg. p) (332)

Classically, this function would correspond to the phase-space density of an
ensemble of electromagnetic oscillators fluctuating statistically around the ori-
gin in phase space with isotropic variances of 1/2 in our units. Quantum-
mechanically, these statistical fluctuations occur even if the spatial—temporal
mode is in a pure vacuum. Figure 3.1 shows the experimentally reconstructed
Wigner function for a vacuum, illustrating beautifully the isotropic character
of the vacuum fluctuations (except for small experimental errors). How docs a
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Fig. 3.1. Wigner Iumlmn for a vacuum (top) and for Lummm state (bottom). We see
clearly that cohcre cal

(see Chapter 5) was um © recanstruet the Wigner hmc\lmn from experimental duta
[Courtesy of G. Breitenbach, University of Constance.]

squeczed vacuum look? Let us study the general effect of squeezing in phase
space first. We obtain from Wigner's formula (3.17)

.
Welgop) = 2;/ exp(\1m)<q—

<
2
1o x x
= E/m explipe)et <u‘ (q - i)‘ﬁ o (q + 5)>ux (3.33)
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Fig. 3.2. Quadrature fiuctuations of a vacuum (top) and a coherent state (bottom). Ho-
modyne detection (see Section 4.2) was employed for performing the quadrature mea-
surements on stationary fields. Fach point fepresents a single measuremen fesult. The.
reference phase (the phase of the local oscillator) was gradually shifted dusing the ob-
servation time. We sec clearly the phase independence of the vacuum fluctuations and
the oscillating effect, Eq. (2:47), of phase shifts on the quadratures of 4 coherent state.
The plat shows a part of the experimental data used to Teconstruct the Wigner functions
of the previous figure via opticat homodyne tomography (see Chapter 5). [Coureesy of
G. Breitcnbach, University of Constance.|

be i §definedin Liq. (2.82 on war
futition according to B, (2.79). We substitute o with ' and g the result

Wia, p) = W(eq, ¢ p). 339
‘The Wigner function fora is squeezed i

and stretched accordingly in the orthogonal line in order to preserve the area in
phase space. In this way the quadrature fluctuations displayed in the Wigner
function arc redistributed from one quadrature to the canonically conjugate
‘quantity. ‘This redistribution s exactly what we would expect from squeezing in
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phase space. Using the general result (3.34), we obtain directly from Eq. (3.32)
the Wigner function of a squeezed vacuum

Welq. p) %cxp(—ekql—e 7). (3.35)

As for a vacuum, the Wigner function is a Gaussian distribution with, how-
ever, unbalanced variances (2.78) indicating the cffect of quadrature squeezing.
Figure 3.3 shows the experimentally reconstructed Wigner function of a sig-
nificantly squeezed vacuum generated by parametric amplification. It is an
casy exercisc to calculate the distribution pr(g, §) for phase-shified quadra-
tures from the Wigner function (3.35) via the Radon transformation (3.1). We

Noise curtent au.]

Fig.33. )
WE e cleary a emarkable squeeing in phase apace and he Cortesponding brething:
of the quadrature naise, Eq. (3.37). The noise trace shows  part o the experimental data
used toreconstruet the depicted Wigner function via optical homodyne tomogruphy (sco
Chapter ). [Courtesy of G. Breilcnbach, University of Constance.] Sco also Ref. 41,
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find the result
N q
w(q. 0) = (2na2q) Pexp( -4
pr(g (2n454) r'( M;q)
with the phase-dependent variance

. 1 .
Alg = (% sin’ § + 7% cos?6). 337

5

‘The quadrature fluctuations of a squeczed vacuum are Gaussian and, of course,
phase dependent. Their variances AZg vary from ¢ % to ¢'% with a period
of 7.

‘Whatis the Wigner function of acoherent state? Coherent states are displaced
vacuums, so we would expect that their Wigner functions are displaced vacuum
Wigner functions, wo, with a displacement given by the complex coherent
amplitude 2'w = go + ipo. That this cxpectation is correet is easily scen,
considering the general cffect of the displacement operator D in phase space

1 pre
W',)(q,p):g/ c:np(ip\)<q

| e
=5 _/m expli(p — po)s]

x
*(4-73 )
according to the general rule (2.56) and (2.59) for displacing position wave
functions. We find that Wigner functions of displaced states are indeed just
displaced Wigner functions

x
lg+% 38
pla+3 (3.38)

Wnlg. py=W(g — o, p — po)

and, consequently, the Wigner function of a coherent state is given hy the
displaced Gaussian distribution
|

Wig.p) = —expl-(g — g0 = (p = po)*i- (340)
Again, the Wigner f displays the typical features of th
tum state: A coherent state as produced by a high-quality laser has a stable
coherent amplitude go + ipg that is contaminated by the unavoidable vacuum
fluctuations only.

we are entitled to think of quantum superpositions of coherent states. These
are states that contain simultancously two coherent components, one pointing
in one dircction in phase space and the other pointing in another. The position
wave function ¥ of such astate would be the superposition of two coherent-state
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Fig. 3.4, Wigner function of a single photon (a anc-photon Fock state) seen from above
and from below. According o Eq. (3.83), the Wigner function is given by the cxpression
Wig. p) = exp{—4’ *)(2g° ~ 2p* — 1)/m. Negative “probabililies” are clearly
vivihle near the arigin of the phase space.
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l71g 35. W|gncrf|mcunn of Schrodinger-cat stutes defined in Bq. (3.41). Top: ¢o = L.
ws ofily a mere squeezing instead of a clear separation of two coherent
nmphmdes Botion: 20 = 2. Fist iiations of v datnct humps ave visioe i the
quantum-intetference structure.
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wave functions: for instance,

1 :
wig) &exp[fz(q 7%)'] +'~‘Xn[ Sla+ qu)z]- @41

(The normalization factor is not important here and has been omitted.) The
wave function shows two peaks, one at go and the other at —go according to
the superimposed coherent amplitudes. Note that this quantum superposition
(341) has nothing to do with optical interference. When two fields interfere,
their amplitude may be enhanced or canceled, producing, for example, coherent
stucs of cnhanced o 5ero amplitude (vacuum). The quantum superposition

Gl sill 1 from
anincoherent ition of £go. hascither ide +g
orthy 90 i ilities. Th the

superposition siate (341) is +go as well as —qo, with a resolution given by the
vacuum fluctuations. This strange behavior of being at +qq as well as at —go
resembles Schrodinger’s famous Gedanken experiment about a quantum cat
being simultancously alive and dead [246]. Therefore, states such as (3.41) are
vamed Schridinger-cat sites. They bave 1oL et becn observed in the optcal
domain, losses. Q

[308] caused by linear losses i the fmain reason that extremely strange quantun
phenomena allowed in theory are very difficult to observe in practice. Which
observable phenomena of the Schrodinger-cat state (341) would we expect?
We caleulate the Wigner function using Wigner’s formula (3.17) and obtain

W(q. p) o expl—~(q — qo)* — p*1+ expl~( + o)’ —
+2exp(—g® = p*) cos2pao). (3.42)

Like the wave function, the Wigner function exhibits two peaks at the coher-
ent amplitudes %qo. However, the interference structure halfway between the
peaks displays the quantum superposition of both amplitudes, showing rapid
oscillations with a frequency given by the distance 2qo of the superimposed
amplitudes. Sce Fig. 3.6. The Wigner function becomes negative, indicating
the nonclassical behavior of the Schrédinger-cat state [47], [243]. To predict
observable effects of the quanium-superposition state (3.41) we caleulate the
quadrature distributions pr(g, 0) via Radon transformation (3.1) of the Wigner
function (3.42) and get

Pr(g,8) o exp[—~(g — gocos 0)*] +expl—(g +qocos )]
2

+2exp(— 44 cos” ) cos(2ggq sind). (343)
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5

Fig. 3.6. Wigner function of Schrodinger-cat states defined in Eq. (3.41). Top: go = 3.
Two separated coherent amplitudes are clearly visible. Bottom: g, = 4. The larger the

separation of
structure,
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Shifting the phasc ¢ tums the position quadrature distribution

P 2 ;
Xpl~{q — gy + 3 expl—{q +40)°) (3.44)
(showing peaks at £4,) into the momentum distribution
pr(p) o< cxp(—p®) cos*(pqu) (3.45)

atf = x/2andq = p, displaying typical intcrference fringes. The interference
patier is mirrored in the highly oscillating Wigner function of a Schridinger-
calt state.

We have seen that Wigner functions are useful to visualize the phase-space
properties of quantum states. Wigner functions display quadrature amplitudes,
their fluctuations, and possible interfcrences.

3.2 Other quasiprobability distributions
In many respects the Wigner representation appears as the best compromise
between a classical phase-space density and the correct quantum-mechanical
behavior, The Wigner function generates the right marginal distributions and
it obeys the overlap relation (3.20) for calculating expectation values in a clas-
sicallike fashion. Yet the Wigner function may be negative. Is there a way 1o
define a strictly nonncgative quasiprobability distribution? Which other useful
quasiprobability distributions can we define?

3.2.4 Q function
We may smooth the Wigner function W (g, ) by convolving it with a Gaussian
distribution having the same width as vacuum to obtain the Q function
1 R P ” o
Q. p)= ;/ / Wig', prexpl—(q — ¢ = (p— p)1dq'dp’.
T (3.46)
What does this expression mean? We recall the overlap relation (3.20) and the
formula (3.40) for Wigner functions of coherent states. We see immediately
that the @ function gives simply the probability distribution for finding the
coherent states |o) with & = 2772(¢ + ip) in the state 3, because

N
Q(g. p) = 5 -tripaial}
= i(ﬂt\ﬁ‘u,‘ (3.47)

(Note also that 7~ {a||e) is frequently called the @ function.) Clearly, the
0 funcion is nonnegative and normalized 1o unily, as is easily seen from the
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completeness relation (2.67) of the coherent states. Consequently, the ¢ func-
it h probabil sities. [n fact, we will consider
in Chaper 6 a scheme to measure the Q function directly as a probability dis-
tribution. We also see that the negative regions of the Wigner function cannot
be extended over areas significantly wider than 1/2; otherwise, the © func-
tion could be negative. (This property puts yet another constraint on Wigner
functions.) Roughly speaking, the Gaussian smoothing (3.46) means taking the
average of W (g, p’) values in a circle area around (g, p) with a radius given
by the vacuum fluctuations. Because any negativitics disappear afier ths pro-
cedure, they must be concentrated in small regions of the Wigner function. The
resolution of these negalive “probabilities” requires an accuracy in the order of
the vacuum fluctuations.

The smoothing of the Wigner function is also clearly scen in the Fourier-
transformed @ function O (s, v). In fact, we obtain from the definition (3.46)

Qv = /

- [P
= Wi vyexp [—4w + v‘r}. (349

b2 pioe
/ Q(q. prexpl—ing —ivp)dgdp  (348)

Because details of the Wigner function correspond to high-frequency compo-
nents (u, v), these details are suppressed in the @ representation,

Eq. (3.49) revels also another important property of the £ function. We use
the formula (3.12) for the characteristic function W (u, v) and obtain

. 1, .
Q= u{ﬁﬂp[— F0+ u‘)] exp(—iug wi))} (3.50)
or, introducing the complex notation # = 2-12(x + iv),
P 1. N .
Q:lr{ﬁcxp(—;ﬁi‘) expi—iap* — nl'ﬂ)} 3.5

because & =2 (4 +ip). Finally, we employ the Baker-Hausdor!f formula
55) and get

pexp(—iap*) exp (—id'g)}. (3.52)
Consequently.
8 o
g ape |
b o
:/ / 0Olg, pya’a™ dg dp (3.53)

using the definition (3.48) of the Fourier-transformed (2 function in the complex
notation @ = 272(¢ + ip). Expectation values of the form tr{/a"a'*} are
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called antinormally ordered. We have seen thal we can express these quantities
in terms of the @ function as if & and &' were classical amplitudes and not
operators, We note, however, that this property relies critically on the ordering
@', and it is clearly lost when powers (4*4™)* arc concerned. (Remember
the discussion at the end of Section 3.1.2.)

3.22 P function
Tn the theory of photodetection (see for instance Ref. [187], Chap. 12), rormally
ordered expectation values tr{pa'*a"} play a distinguished role. How can we
find the phase-space correspondence for normal ordering? We simply reverse
the order of the exponentials exp(—iaf*) and exp(—ia'4) in the expression
(3.52) to define a new function

Puu,v) = tr{ pexp (—ia'B) exp(—iap" } (3.54)

with the convention 8 = 271/2(x + iv). Using the same arguments as in the

previous subsection we see thal the P function
1 e g
Plg.p) (ZT).[m ./m P, vyexpliug + ivp) dudv (3.55)
corresponds o the normal ordering
o
w{pata’} :/ / Plg. pyaa” dg dp (3.56)

with @ = 2 '"2(q +ip). Because normally ordered quantities are quile funda-
‘mental in quantum optics, the property (3.56) is one reason that the £ function
(also called the Glauber-Sudarshan function 11061, [2611) is a rather popular
phase-space distribution. Yel another reason s that the P function diagonalizes
the density operator in terms of coherent states. To see this property, we argue
along similar lines us in the previous subsection where we started from (3.49)
and amived al (3.52). Here we do the necessary algebra in reversed order -
we start from the definition (3.54) and arrive via the Baker—Hausdorff formula
(2.55) at

Wi, v) = Plu,v) exp[—%(ul + .57
Conscquently.
o o 1 X
Wig.p = / / Plgo, po)- expl=(g = qu)* = (p — po)’ldgodpo
i (58

We recall the formula (3.40) for Wigner functions of coherent states le) with
@ = 271%(gs + ipg), and we use the general correspondence between the
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Wigner function and the density matrix to result 261 ] (called
the optical equivalence theorem [1371)
oo oo
ﬁ=/ / Plgu, po)le){er| dgo dpo. (3.59)

At first glance this formula appears as a representation of the quantum state
in terms of a distribution of coherent states, that is, as a statistical mixture of
classical amplitudes. This is impossible! There is no way (o represent a pure
state ) a5 a mixiure of coherent states, unless [y} itscll i a coherent state.
Yet the algebra to arrive at the result (3.59) is correct. What is wrong? The
answer is that the P function might be very ill-behaved. For instance, we see
from Fq. (3.57) that the Wigner function is a smoothed P function. Because
the Wigner function ean display negative “probabilities” the P function might
behave even worse, that is, it might be negafive or it might not even exist as 2
tempered distribution. (States having such P functions ace called nonclassical
states. See the discussion at the beginning of Section 2.2.3) Because the P
function is such a delicatc mathematical construction, there is no practical way
o reconstruct it from experimental data.
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We may also convolve the Wigner Tunction with Gaussian disibutions hay-
ing a width different from what would correspond to the vacuum noise. In
this way we obtain a whole family of distributions called the s-parameterized
quasiprobability distributions W (g, p: s) [513, 521, [156]. First, we define the
characteristic functions

Wi, v:5) = Wis, v) exp [%(ﬁ + H)] (3.60)

For historical reasons [S1], [52]
the Wigner function is smoothed. We sce from definition (3.60) that in this case
the distribution isindecd suppressing high frequencies (u, v) deseribing details
in the Wigner function. The are
obtained from the characteristic function via inverse Fourier transformation

1 o . N
@t [» /7OC Wiu, v; s)expling + ivp)dudv. (3.61)

Obviously, all previously studied quasiprobability distributions arc included in
this family of functions because they correspond to the paramefers
+1: P function,
s=14 0: Wigner function, (3.62)

Wg. p;s)=

—t: Q function,
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respectively. Tn this way the defined distributions intecpolate between the 2,
the Wigner, and the ¢ function. ‘The range of s, however, is the whole real
axis. Note that it is also possible o definc quasiprobability distributions corre-
sponding to complex s parameters |300].

Let us study some general properties of s-parameterized quasiprobability
distributions. Of course, they are normalized o unity e

.
/ / W(g, pi )dgdp = Wi0,0: 5)

We obtain from the obvious relation

(3.63)

3.64)

" 1 ?
Yexp| 35 =26+

the formula

L e e
Wig. pis) 77/ / Wi p s

G

Y-gV+w-r)

s ] dg'dp’,  (3.65)

coa]-
provided that s < ¥ 50 tha the integral converges. This relution shows that
there is smoothing hictarchy amonsg thes-parameterized quasiprobability dis-
ributions. The smaller sis, the more th thed.
Moreover, the marginal distributions pr(g. 8 s) of smoothed Wigner functions
(s < 0) are smoothed accordingly, that is, .

4o
prig. 6: ) :/ W(gcos — pyinf, gsind + peostishdp  (3.66)

Ishy / pr(g’, ) expl—1s{ Mg — 'P1dg’, (367
because the Wigner function hus the quantum-mechanically correct marginals
prig. B). Additionally, the overlap relation (3.20) must be modified for 3-
parameterized quasiprobability distributions because

e

I'(F1Fz}:2ﬂ/ / Wilg, pYWalq. p)dgdp
o
/ WGt ) Wa(—, —0) dudv
T
:11/ / Watu, v; ) Wa(—t, —vi —s) dudv. (3.68)

Consequently, we obtain

o
uthﬁ;):z”/ / Wilg, pi OWalg. pi ) dgdp  (3.69)
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and in particular
. oo e
u(ﬁF):Zn/ / Wig. pis\Welg, ps—s)dqdp.  (370)

This relation shows that a smoothing of the quusiprobability distribution must
be compensated for by an enhancement of the resolution of the filter func-
tion Wr(q. p) to calculate expectation values, and vice versa. This procedure
may cause significant problems because it requires extremely high accuracy for
W (g, p: 5) andit may involve singular filter functions W (g, p: 5). We see that
the price (o be paid for having # nonnegative quasiprobability distribution is the
introduction of additional noise in practical applications. This noise appears in
the smoothing of the marginal distributions, and it must he compensated for by
enhancing filter functions to comrectly predict observable quantities. Finally,
we also note that a certain s-ordering of operators [52] can be defined to cal-
calatc expectation values. However, apart from the normal ordering for the £
funetion, the symmetric ordering for the Wigner representation, and the anti-
normal ordering corresponding to the @ function, these ordering procedures
are involved. The reader is referred to the comprehensive articles by Cahill and
Glauber [51]. [52] for the details.

3.3 Examples
How do @ functions look? How smoothed are they compared with Wigner
functions? How singular can a 2 function be? Let us study some examples.
The simplest candidate to consider theoretically is a Fock state [n). We sce
immediately from formula (3.47) and the Poissonian photon statistics (2.64) of
a coherent state that the @ funetion of a Fock statc is given by

1 2
(g, p) = St lml
n

! N
= oy Pl 3
i Loy s ](a2+PY
=—exp|- * 3
zﬂn!exp[ 5@ +p\]( 5 a2

According to the Gaussian approximation for the Poissonian distribution [279],
1241] we can approximae (3. 72) for large quantum numbers and get

z'_(“r expl-(r — )l (373

with

r=y (3.74)
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and the Bohr-Sommerfeld radius [79]
=Vt (3.75)

We sce that the @ function of a Fock state deseribes & ring with the Bohr-
radius r, in ph; This Fock

ates containing exactly # energy quanta and showing no wavelike
. The P function for a Fock state is obtained from Eq. (3.72)
by Fouricr transformation according 1o the general relations (3.60) and (3.62).

The result
@+ N1/ &? LI
( 2 )[,(T{l +; )} 8(g)3(p) 3.76)

indicates clcnrly that Fock states are indeed nonclassical because their P func-
[t derivatives of the i ional delta function §%(er). (The only
exception is obviously the vacuum state with n = 0) This example illustrates
the mathematical subtleties involved in the P representation.

Let us consider another cxample, a thermal state, with density operator

p==e) Y inyinte P @77
=

Here 8 denotes the ratio fw/ k5T of the energy 7w and the temperature 7. (As

usual k denotes Boltzmann's constant.) To justify the formula (3.77) we recall

that in thermal equilibrium the density operator must be diagonal in the encrgy

representation and that photons obey the Bose statistics. We use expression

(3.71) to caleulate the Q function of the thermal state (3.77)

t =1 5
—p @ Ze—Pyn
0(g, p) = (1 = e exp(=lo );‘:n Sl

7(1 ~ e Fyexpl~laf(1 — )] (3.78)

1 5 !
- e Frexpl—t@t 4 =B G
z—:“ e Mp[ 3@ + P —¢ )} 379

The @ function is a Gaussian distribution centered at the origin in phase space.
Inthe limiting case of vanishing temperature, we obtain the Q function Qu(g, p)
of a vacuum, whereas for finite temperature the Gaussian distribution (3.79)
is accordingly broader, This difference illustrates the additional fluctuations
involved in a thermal state. Using Fourier transformation we obtain from the
Q function (3.79) the Wigner function fur a thermal state

| . B \
W(g. p) = ~ tanh(8/2)exp[ (9" + p*)tanh(f/: (3:30)
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Fig. 3.7. O functions of a Fock state (top), Eq.
coherent state (bottom), Fgs. (3.90) and G
quite different, the ¢ functions are similar.

@
it

with

72), and of a phase-randomized
n = 4. Although the states are
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Like the Q function, the Wigner function displays the additional thermal fluc-
tuations as wetl. Note that formula (3.80) also reveals the # function for the
thermal density operator (3.77) by Fourier transformation
."(«»mf%(wt Dexpl—(g* + pHe’ — ). 38D

The P function of a thermal state is a well-hehaved positive function that can
he rightfully regarded as a probability distribution. In this sensc thermal states
are classical states. According to Eg. (3.59) the £ function diagonalizes the
density operator in terms of coherent states. So instead of sceing the thermal
state as a statistical mixture of nonclassical Fock states, we may unravel the
thermal densiry operator (3,77 into a Gaussian distribution of coherent states,
that is, into an incoherent mixture of statcs with well-defined amplitudes and
phases. In this way we find a satisfying physical interpretation of thermal states
and 4 good example (o the general ambiguity in
unraveling a mixed-state density operator. Sce Section 1.3.4.

Formula (3.80) reveals the Wigner function W,(g. p) of Fock states as well.
We expand W (g, p) in terms of e~#

W(g, p)=(1-c?)> Wig. plc ™ (3.82)
p=t
with
v (v 1 2
Walg. p) = ——exp(=g" = pI)Lu(2q
Here the Ly (g) denote the Laguerre polynomials, and we have utilized their
relation

2p%). (3.83)

S L@ = (- 7 explyz(z— D). (3.84)
=

See Ref. [89]. Fq. 10.12(17). Because the thermal density operator (3,77) is
expanded in the same way as the expression (3.82), the W,.(q. p) mustbe indeed
the Wigner functions for the Fock states |r). Figure 3.8 shows that in contrast
tothe © function, the Wigner function for a ock state displays a “wavy sca”
of rings in the area enclosed by the Bohr-Sommerfeld band [79]. This fearure
illustrates again that Fock states are clearly nonclassical. Note that the “wavy
sea” is necessary to guarantee the orthogonality of the Fock states because the.
overlap of two Wigner functions W, (4. p) and W, (g, p) must vanish according
(o formula (3.23). The transition to the Q function. however, smoothes out the.
waves, and only the Bohr-Sommerfeld ring at (2n + 1)*/% remains. This result
shows strikingly that the Q function displays far less signature of a quantum
state in phase space than does the Wigner function.

We can see this another way. Significantly different quantum states may
create similar Q functions. Given a picture of a Q function, it may be difficult
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Flg. 3.8. Wigner functinn of 2 Fock state with n = 4 (top), Eq. (3.83), compared with
the © function (bottom). Eq. (3.72). ‘The plot range for the 0 function was set to half
of the range for the Wigner function to visualize the differences between the O and the
‘Wigner representation.
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to infer the state behind the picture. Probably the best cxample to demonstrate
this is a Schrodinger-cat state
V) o o)+ — ) (3.85)
(we omit the normalization factor). Using the scalar-product (2.66) of coherent
states, we obtain immediately from formula (3.47) the © function
Ole) x exp(—|or — arol?) + exp(—lat + arol?)

+2exp(—.al” = lwol*) cosl2im(a cn)]. (3.86)
All that is lef from the beautiful quantum-interference structure clearly dis-
played in the Wigner function (3.42) is an exponentially small bump propor-
tional to exp(—|ay|?). The more macroscopic the quantum superposition (3.85)

is, the smaller is this term, 1f we neglect the little hump we obtain the © function
of the incoherent mixture

1
£ = 5 (leo) o] + |—a0){—oa)). (387

The @ function cannot clearly discriminate between macroscopic superposi-
tions and statistical mixtures, that is, between the classical either ay or —aq
and the quantum-mechanical aq as well as —co.

Another example is a phase-randomized coherent State having the density
operator
d¢

[t expton @ expn 52 G489

withthe Bot radiusr, definedin (3.75) . Thi
the same picture as a Fock state in the @ representation. The Q function of a
coherent state is.

1 1 1 2
Q(qu’):73)&9[*5“{*qu)’**(p*}'n)‘}» (3.89)
" 2

as is easily obtained from the Wigner function (3.40) or, alternatively, from the
scalar product (2.66). Consequently, the  function of the phase-randomized
coherent state (3.88) is given by

Q= cxp[ I ri\} Iolrry) (3.90)
2 2 -

using Ref. [225], Eq. 2.5.10.3, to perform the ¢ integration. Herc /, denotes
the zeroth modified Bessel function of the first kind, and the radii r and r, have
boen defined in Eqs. (3,74) and (3.75). According to the asymplotic behavior
of the Bessel functions for large arguments, expression (3.90) tends rapidly to
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the approximation

Q xpl=(r — ra)’] 391

1
[Caer
for large quantmm numbers. Sce Ref. [89], 1iq. 7.13.1(5). Similar to Fock
states, the Q functions of phase-randomized coherent states deseribe rings in
phase space. The only difference is that the rings are broader by a factor of
2172, Yet the states and their ph)ncﬂ propertics are swmﬁmnny different. Lor
instance, h [ ph: tates is Poissonian
(2.64). (Phase changes do not affect the phuton statisties.) In the limit of large
intensities the photon distribution (2.64) becomes extremely broad because the
variance equals the mean for Poissonian statistics. Fock states, however, always
have a precise photon number. Paradoxically. in the region where the photon
distributions of phase-randomized coherent states and of Fock states are vastly
different, their Q functions are very similar. The Wigner functions, however,
differ significantly.

Nevertheless, both the @ function and the 7 function are mathematically
equivalent (o any other representation for quantum states, and we are entitled to
use this cquivalence in tricks to derive theoretical relations. On the other hand,
when the Q function is numerically or experimentally given, the retrieval of
derails hidden in the Q function (but clearly displayed in the Wigner function)
takes significant cffort in precision. In any case, we must perform a deconvolu-
tionlike procedure that is typically delicate. This fact motivates the conclusion
that experimental efforts should be aimed at measuring the Wigner function
rather than the @ function to determinc the quantum state. The measurement
or even the reconstruction of the P function is clearly beyond feasibility, be-
cause this mathematical object might be ill-behaved, as we have seen in the
case of a Fock state.

34 Vurther reading

Apart from Wigner's Wigner function [290] defned i the phase space of posic
ther po: igner functions exist for differentsy
Forinstance, spin sysicms may be described by continuous Wigner functions.
SeeG.S. Agarwal[3]; ) P Dowling, G.S. Agarwal, and W.P. Schleich [80]; M.O.
Scully [248]; T.. Cohen and M.O. Scully [57): M.0. Scully and K. Wodkiewicz
12491 M.0. Scully, H. Walther, and W.P. Schleich | 250} K. Wodkiewicz [205];
and J.C. Vérilly and JM. Gracia-Bondia |277l
The discrete Wigner 1:

distributions for finite-dimensional systems. See the interesting paper by W.K.
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‘Woatters |298] for prime-dimensional state spaces and the extension to odd-
dimensional systems by O. Cohendet, Ph. Combe, M. Sirugue, and M. Sirugue-
Collin [611, [62]. Wigner functions for even dimensions are a bit odd, and
they, together with the odd-dimensional ones, have been considered in a bricf
communication [165] and in a detailed paper [170]. Moreover, a discrete @
function has been defined by T. Opatrny, V. Buzek, J. Bajer, and G. Drobny
[203] and extended to discrete s
by T. Opatrng, D.-G. Welsch, and V. Buzek [204]

Also, Wigner functions for angular momentum and phase have been con-
structed by N. Mukunda [192] and J.P. Bizarro [31]. Wigner functions for
photon-number and quantum-optical phase have been given by W.P. Schle-
ich, R.J, Horowicz, and §. Varro [242]; J.A. Vaccaro and D.T. Pegg [271]; A.
Luks and V. Pefinovi [183]: and, finally, in a communication [272] and in a
comprehensive paper [274] by LA. Vaccaro.




